
REQUIREMENTS WITH TEETH: HOW TO BITE WITHOUT BEING BITTEN

Kirt A. Dankmyer

CSOC System Administrator
Wallops Flight Facility

Building E-107
Wallops Island, VA 23337

Kirt. A. Dankmyer.1@gsfc.nasa.gov

ABSTRACT

The Standard Autonomous File Server (SAFS) has operated
continuously for four years now, and has yet to require an
upgrade or any form of costly maintenance, while perform-
ing better than its metrics require. It has achieved this suc-
cess due to several factors. First and foremost, requirements
for the system were gathered and, most importantly, adhered
to and not changed during the lifespan of the project; that is,
the requirements had teeth. Second, future needs were an-
ticipated, and willingness was shown to pay a higher initial
cost in order to lower costs in the long-term. (This included
the acknowledgement of the importance of the oft-cited, but
less often performed task of producing a large amount of
clear, concise documentation, and integrating this documen-
tation with training.) Third, careful research was done to en-
sure the commercial and open source products used in the
design of the system were not simply affordable, but were
easy to maintain in the long run. A particular emphasis was
placed on establishing working relationships with the ven-
dor representatives, project customers, and mission support
personnel. In this way, we ensured that we didn’t bite off
more than we could chew.

This paper will provide a brief overview of the SAFS,
and then examine a variety of challenges the SAFS has over-
come so far. It will explain how the design anticipated and
met these challenges. This paper will show that by sticking
to the design requirements of the system and not compro-
mising, even problems that were not anticipated were easily
overcome and the dangers of “feature creep” were avoided.
That is, we gritted our teeth when customers tried to alter
our design to suit what they wanted rather than what they
needed, and consistently pointed customers to alternative
options available on the SAFS that could meet their “re-
quirements,” without resorting to bare fangs. (For example,
we will examine how the SAFS minimized the cost of in-
creased security requirements that were levied on the sys-

This work was supported by Annette M. Conger, Pati H. Peskett, Su-
san K. Semancik, Jeanette L. Smolinski and the CSOC contract.

tem, especially since 9/11.) This is an in-the-trenches ex-
amination of a system under the pressures of constant 24x7
use; we will explain how cost and time effort were mini-
mized, while performance was maximized with an eye to-
ward meeting the needs of future mission, customer, and
deployment scenarios.

Particular focus will be placed on the human factor, i.e.
avoiding someone else’s bite, in many cases through a will-
ingness to work with others while standing one’s own ground.
Being an automated system, the SAFS was designed to min-
imize human error, which bites everyone in the end. By
sticking to the design principles of the SAFS, human error
was further minimized. On the other hand, the SAFS was
designed with an eye toward the areas where automation
does not work, maximizing the usefulness of those humans
involved in its maintenance and their ability to maintain the
system, through extensive and useful built-in logging and
troubleshooting tools. In particular, the design recognized
the importance of being transparent to those who maintain
it, and the oft-overlooked importance of good relations with
the people who produced the commercial software associ-
ated with the SAFS, i.e. not biting the hand that feeds you.

To understand the advantages of the design of the Stan-
dard Autonomous File Server (SAFS), we must first under-
stand the purpose of that design, and how a SAFS works.

The SAFS was designed to distribute satellite data to
a variety of customers without interfering with the assets
involved in acquiring the data, while adhering to strict data
latency requirements. In other words, the SAFS had to be
able to quickly send data files to a known set of customers
as soon as data was fully acquired.

Second, in addition to meeting latency requirements,
the SAFS had to be able to guarantee that the data always
reached the customer. The data could not be lost.

There was an additional challenge in that the data had
to move from a secure, closed network behind a firewall –
NASA’s Ground Network – to customers on the (insecure)
Internet. On top of this, the ground stations on this closed



network were all over the world, from Alaska to Antarc-
tica, so they could not easily share systems. To this end,
each ground station was given a SAFS system (a “station
SAFS”), which flows data to a centralized SAFS system
(the “central SAFS”) on the open side of the network, which
then flows the data to the customers. (Because of the mod-
ularity of its design, a SAFS can flow data to another SAFS
just as it would another customer.) This way, only one hole
in the firewall was needed, rather than one for each cus-
tomer, which could have been a serious security problem,
not to mention a configuration nightmare.

Breaking the acronym into its component parts, the SAFS
is “Standard” in two important ways. First, the hardware
and software (with some small exceptions) are absolutely
the same in each system. Second, and more importantly, the
SAFS has a standardized interface for receiving and sending
data. From the start, the SAFS was designed to be highly
flexible and modular, keeping everything generic and stan-
dardized so it could be modified later.

The “Autonomous” part of the acronym comes into play
in that the SAFS is designed to operate automatically, with
no operator intervention. Once a file is put on a SAFS, it is
then delivered to all customers automatically.

Finally, the SAFS is a “File Server”. Every SAFS sys-
tem has, as an integral component, a Redundant Array of
Independent Disks (RAID). The RAID is used to store the
data for a certain amount of time – usually 48 hours – in
case of some sort of failure. Since it is a central point of
distribution, the central SAFS has a much larger RAID than
the other SAFS systems.

A major part of the SAFS is a Commercial Off-The-
Shelf (COTS) product called FASTCopy, which enables,
among other things, the secure, reliable, and quick transfer
of files.

The SAFS was originally designed, tested and docu-
mented by Susan Semancik and Annette Conger as a NASA
project, and then transitioned to the Consolodated Space
Operations Contract (CSOC) for sustaining engineering. Six
months before the transition, I became the SAFS system
administrator. After the transition, the design finally had to
show its teeth, as it met the bared fangs of 24/7 “real-world”
operation without aid of the developers.

Since that time, the SAFS has outperformed its require-
ments. The SAFS has operated continuously for four years,
delivering up to 3 Gigabytes of spacecraft telemetry daily to
researchers, flight operations teams, and other end users in
a variety of locations worldwide. This is largely due to the
advantages in the design.

One of these advantages was in the requirements them-
selves. All too often, requirements for a system shift and
expand during development, or are not sufficiently clear be-
fore development begins. Such things tend to bite you in the
long run. To prevent this, the designers of the SAFS made

sure to research the requirements thoroughly, talking to all
potential customers about their needs, and engaging in re-
peated discussions to nail down specific, clear requirements.
Once requirements were set, the SAFS team absolutely did
not change requirements once the design was completed.

This willingness to plan ahead extended to all aspects
of the SAFS. This effort, in the long run, resulted in a sig-
nificant cost savings. Every effort was made to anticipate
future needs, and a willingness was shown to spend money,
in terms of both equipment and hours of labor, in order to
ensure a greater savings in the long term. The idea that ex-
tensive pre-planning pays off in the end is not a new one, but
one which is often overlooked. The SAFS is an example of
how successful such preplanning can be.

There were five major areas where planned up-front costs
made a difference.

First, there was the planning of the RAID system. The
designers made sure that the size of the RAID not only meet
the anticipated needs of the SAFS, but greatly exceeded
them, so that there was room for expansion. Also, the de-
signers chose a vendor (Data Direct Networks) that they de-
veloped a close relationship with, one that provided excel-
lent and personal support for the system. It is not possible
to over-emphasize the importance of the human factor in
this respect. Good support, in an operational environment,
more than exceeds in value any savings that can be gained
by going with cheap, poorly-supported hardware.

Second, there was server hardware itself. A UNIX server
produced by Silicon Graphics Incorporated (from the Ori-
gin series of servers) was chosen to be the server compo-
nent of each SAFS, because of the long-standing reliability
of UNIX systems in general and SGI systems in particular
in the server world. (Not to mention the ease with which
a UNIX system is integrated into a TCP/IP network.) This
hardware is capable of supporting multiple processors, al-
lowing for future expansion and ensuring that a SAFS is
capable of processing all the different streams of data en-
tering and exiting the machine. In addition, the SGI UNIX
hardware is capable of communicating very quickly with
the RAID system – there is much less of a bottleneck for
data access. Again, the designers had a close relationship
with the vendor, which has a history of excellent and respon-
sive support. An element of this support worth mentioning
separately is the documentation – SGI provides extensive
paper documentation, as well as having all its documenta-
tion available on the web. These advantages were integral
in the design decision to use SGI hardware for all SAFS
servers.

Third, there is the matter of the documentation of the
SAFS hardware itself. Again, the importance of documen-
tation is not a new idea, but it cannot be emphasized enough.
The designers of the SAFS not only produced high-quality
documentation, but they made sure it was up-to-date, up to



the very last minute, right before the transition to CSOC.
They produced documentation for the operators that needed
to send data to the SAFS. They produced documentation for
the system administrator. They documented the interface so
others could integrate that information into their own docu-
ments. Every effort was made to make the documentation as
clear as possible, and even accessible to those who had En-
glish as a second language. Every procedure that the SAFS
team found useful in creating or maintaining the SAFS was
captured. (In fact, these procedures were so useful that I still
use some of the SAFS procedures when working on other,
unrelated, SGI systems.)

Fourth is training. Again, all too often, a system is
handed to a contractor with no guidance as to where to start.
In the case of the SAFS, I worked closely with the SAFS
team for six months before the transition. The SAFS team
cared enough about the system – and me – to get me in-
volved immediately, to answer my questions, to take me out
in the field to install different station SAFS systems as a
team. I was directly involved in the polishing of the doc-
umentation that was to go to myself and others. In terms
of planning, the SAFS team had prepared themselves for
this period of training long before I appeared on the scene,
and were willing to put in the labor required to get me up to
speed. The spirit of contractor/civil servant cooperation that
was supposed to be the hallmark of CSOC was strong in the
SAFS team.

Finally, we come to spares. This is one area where an
initial outlay of money can save an immeasurable amount
later. Every SAFS has a backup clone of the server, not to
mention spare RAID drives and spare parts for every single
component of the SAFS. Every ground station – and the
Goddard Space Flight Center, where the central SAFS is
located – has these spares on-hand and ready to use.

All of these examples of pre-planned up-front costs will
be of relevance later.

Another reason for the success of the SAFS system was
the planning that took place with regard to the COTS prod-
ucts and the planned use of open-source products. Where
no known open source or standard solution existed, the best
possible COTS product available at the time was chosen
on its technical merit. Wherever possible, however, tried-
and-true methods were used. A large amount of the SAFS
was written in shell scripts, which have been around for
nearly thirty years, and have seen extensive use throughout
the UNIX world. Long before security was the issue it is
considered to be today, the SAFS team recognized the need
for security as well as remote administration, and installed
a tested, open-source version of Secure Shell (SSH) on all
SAFS servers for use in remote administration.

One final reason for the success of the SAFS involves
the careful planning of the transition from NASA to CSOC
itself. In addition to the training mentioned before, every

effort was made, before the final transition, to make sure
every possible objection or concern from every side of the
fence was considered and responded to, and that all stake-
holders, from customer to designer, had a say. Linking into
the importance of documentation and requirements, it was
made crystal clear during the transition what was expected
out of CSOC with regard to the SAFS.

I could go on about the design until we are all very long
of the tooth, but the advantages of the design are best il-
lustrated in terms of examples – in particular, in terms of
several of the challenges the SAFS had to face.

By its very nature, the SAFS is designed not to support
a single project, but to provide data to a variety of projects.
With each project, new requirements were levied upon the
SAFS – which the design anticipated and dealt with.

The first project to use the SAFS – indeed, the project
that SAFS was tested with – was the Quick Scatterome-
ter project (QuikSCAT). A variety of customers, from Jet
Propulsion Labs to the National Oceanic and Atmospheric
Administration (NOAA), were interested in the data coming
out of the QuikSCAT project. Therefore, as mentioned be-
fore, from the start the SAFS was designed to be capable of
sending data automatically to multiple customers on differ-
ent platforms (Microsoft Windows as well as UNIX), using
built-in features of the FASTCopy COTS product. Also, in
another example of good design, the configuration changes
required to add a new customer are relatively small.

QuikSCAT set the tone for stringent data latency and
reliability requirements, a challenge which the design an-
ticipated and met. Again making use of the native abili-
ties of the FASTCopy product, the SAFS attempts to send
a file three times to a given machine, and, if that fails, it
then fails over to a secondary machine, specified by the cus-
tomer, which it tries to send data to three times as well. Fail-
ing that, an email notice is sent to the customer that the push
has failed on both the primary and secondary customer ma-
chine, explaining where on the SAFS the data can be found,
so the customer can connect to the SAFS and acquire the
data that way.

In other words, every effort is made to make sure the
customer gets the data. Even if a file transfer is interrupted,
a SAFS, again using an ability of the FASTCopy product,
can re-start the transfer where it left off when it tries to re-
send – no data is lost in the process.

Because of this, the SAFS has nearly always met its data
latency requirements for QuikSCAT, and has continued to
do so even after other projects started to use the SAFS. The
only times data latency requirements have not been met is
due to issues unrelated to the SAFS (operator error, network
problems, et cetera) or due to the swap space problem, a
challenge I will discuss later.

Here, as with future projects, the flexibility of the SAFS
was key. The SAFS was designed not just to meet the needs



of a single project, but with an eye toward a variety of later
needs, even ones that no project was currently demanding.
For example, because the SAFS is designed to be capable
of receiving data from anywhere and sending it anywhere,
when the QuikSCAT project wanted to be able to send a pro-
cessed data file to the SAFS to be distributed to the Japanese
space agency, NASDA, it only took a small configuration
change and some testing to get this mechanism in place.
Given this flexibility, each ground station needs only one
SAFS to do its job, even with multiple projects, files, and
customers involved.

Several more examples link to the Advanced Earth Ob-
serving Satellite II (ADEOS II) project, which was highly
instrumental in the creation of the SAFS in the first place.
While the QuikSCAT project was the main project that was
used to test the SAFS at first, the designers knew that the
ADEOS II project was coming down the pike, and that it
wanted to use the SAFS. They also knew, through their re-
search, that NASDA, a major ADEOS II partner, had some
very specific requirements in terms of how the data was to
be sent to them, and what protocols were to be used in no-
tifying them of that data. In particular, a Data Ready No-
tice (DRN), in a very particular format, had to be sent to
NASDA to notify them their data was ready. After the data
is received, a Data Receipt Notice (DRN), again in a very
particular automated format, is sent back.

Two all-too-common reactions to stringent requirements
are to gripe about them and/or attempt to work around said
requirements. Instead, the designers of the SAFS embraced
them. Not only did they design the SAFS to use the data
notification protocol that NASDA required, but used a ver-
sion of the protocol to perform notifications for other cus-
tomers, and coupled the DRN/RCN system closely with a
logging system, so it was easy to tell at a glance who re-
ceived what file, and when. Because of the work done in
finding out the needs of the customers, the SAFS design not
only met the needs of the ADEOS II project, but provided a
useful logging and data notification facility that is now used
by all projects that acquire data from the SAFS. This abil-
ity, through the logs, to know whether files had arrived and
where, made it much easier for all projects to troubleshoot
and to monitor the flow of their data. Even before ADEOS
II was launched, this ability was used extensively in testing
and by the QuikSCAT project.

Also, as the ADEOS II project was gearing to launch,
the importance of having requirements with teeth came to
the fore. As an administrative tool, the SAFS team had
written a program that processes the logs produced by the
notification system into an easy-to-read web page. Several
times, members of the ADEOS II project or the QuikSCAT
project tried to turn the regular production of the web page
report into ade factorequirement.

At this point, however, the SAFS had already been tran-

sitioned to CSOC – development was over, and the require-
ments had already been set. A lot of pressure was brought
to bear regarding this web page. However, while remaining
polite, the SAFS team (consisting, at first, of the developers
and myself, and later consisting of just myself) remained
firm on the fact that the production of a web page from the
SAFS logs was not a requirement of the SAFS system, and
would not be supported as if it were mission-critical data.

Often times, when something like this comes up, the
sustaining engineering group bends to the wishes of the project,
resulting in untold clandestine hours of after-the-fact devel-
opment – and cost overruns. In order to get the reliability
for the web page that was desired by the customers, a dedi-
cated – and redundant – web server would have had to been
put up, with appropriate personnel to maintain it. In addi-
tion, the ADEOS II team wanted an additional SAFS web
report which did not at that time exist (and still does not ex-
ist), which would calculate the latency data for all the files,
rather than simply showing whether the files had arrived or
not, as the current report did. This would have required
many man-hours of additional development, on top of the
costs already mentioned.

Also, there were technical issues to consider. The SAFS
was not designed to produce web reports – that feature was
an afterthought. It was designed to move files to customers.
Any time spent doing something other than sending files to
the customers must, by necessity, come out of the time and
processing power normally dedicated to the primary func-
tion of the SAFS.

When it became apparent that CSOC could not pay for
such an after-the-fact effort that was not supported by the
system requirements, and when it was made known to the
ADEOS II and QuikSCAT team how much such an effort
would cost, the issues regarding the web reports largely dis-
appeared, almost overnight. This situation came about after
extensive good-faith efforts on the issue and much polite
correspondence, while remaining firm on the requirements
of the SAFS. No fangs were bared.

The lesson here is that while it is important to please
the customer, it is human nature to try to get more out of a
system than it is designed to do – and more out of support
personnel than they are paid to do. However, so long as the
customers are treated with respect, it is possible to disagree
with them, and still get work done. It is important to note
that while this issue was being discussed, the primary pur-
pose of the SAFS continued unabated – files continued to
reach the customers. The customers, honestly, had nothing
to complain about.

Plus, the dangers of feature creep are well known; there
is always a distinct possibility, in trying to produce a product
that does everything, that the result is a product that does
nothing. I used to joke that just because the SAFS does
not make coffee, and a customer would find it convenient



for the SAFS to make coffee, does not mean that one must
build a coffeemaker into the SAFS. It should be possible to
say “no.”

On a more trivial note, another capability the SAFS has
that is used by ADEOS II involves file naming. The SAFS
has a standardized file-naming convention that it uses to
help keep track of important information about the file, like
when the acquisition of the signal from the satellite occurred,
down to the second. However, knowing that ADEOS II and
other, forthcoming projects would want to use their own
file-naming conventions, the SAFS was designed to be ca-
pable of handling this, while still providing (internally) the
information that the SAFS needs.

Another small example of the advantages of the SAFS
design connects to the file naming convention and goes back
to the overall flexibility of the SAFS. The preferred method
for acquisition of data on the SAFS is the FASTCopy push,
as it is automatic and reliable, i.e. using FASTCopy to send
the data directly to the customer. However, again going
back to knowing one’s customers, NASDA preferred a sit-
uation where they pulled the files via the standard UNIX
File Transfer Protocol (FTP), using the Data Ready Notice
to know when to connect to the server. Therefore, this sec-
ond facility was added to the SAFS, as it would not damage
the way the SAFS operated, and it added some additional
flexibility to the SAFS. This was a different way the SAFS
could get data to the customers, or, more accurately, that the
customers could use to get their data themselves.

(It is important to note – and this will become relevant
later – that an FTP push was not implemented because it
would have required writing from scratch, for FTP, all of the
tools for data reliability that already existed in FASTCopy,
resulting in a lot of extra development for very little gain,
and possibly not even the same level of reliability.)

When the High Energy Solar Spectroscopic Imager (HESSI)
project came along, it did not have the money to buy a
FASTCopy client. Therefore, the FTP method was perfect
for them – they would get a notice when the file was ready,
and then FTP it. In addition, the HESSI project had no par-
ticular naming convention it needed to use, so the fact that
the SAFS already had a standard naming convention saved
them a lot of time and effort. (Again, this is a small example
of the advantages of being willing to do the additional work
up-front, during the design process, to produce cost savings
later on down the road.)

Finally, for a very long time there has been talk of hav-
ing some older missions – satellites which were launched
before the SAFS came along – distribute their data to the
customers via the SAFS system. One obstacle to this is that
most of the missions in question received their data on the
closed side of the network, so it would be impractical for
the data to be acquired from the central SAFS.

Again, the flexibility in the design of the SAFS came to

the rescue. As far as a SAFS is concerned, any customer is
the same as a SAFS. The station SAFS, with a trivial con-
figuration change, could be set to send data to a customer
on the closed side of the network just as easily as it could
send data through the firewall to the central SAFS. (We will
talk more about these legacy missions later.)

Overall, as each new project was added to the SAFS,
they brought with them new requirements – but nothing that
had not already been anticipated. So long as the potential
customer understood what the SAFS was for, i.e. that it was
for delivering files to customers, not for making coffee, then
the SAFS was a suitable tool for the task. These examples
only touch on the different projects that have made use of or
considered making use of the SAFS.

Another battle that the SAFS had to face involved the
station operators who fed data to the SAFS. Traditionally,
operations personnel had full – in many cases, administra-
tive – access to the inner workings of a given system. This
was because many systems require troubleshooting in the
field.

However, the SAFS was designed from the start to be
autonomous, so by definition it had to be as “bulletproof”
as possible. It should be capable of operating with no inter-
vention whatsoever.

It is another unfortunate fact of human nature that given
the opportunity to tinker with something, someone usually
will. The chance of this happening increases exponentially
the more people who have access to the machine. I know
from bitter experience with certain non-SAFS systems that
I maintain that this is true. If I had a dollar for every time a
problem was the result of someone changing a configuration
file and not telling anyone about it, I wouldn’t have needed
CSOC to fund my trip to this symposium.

Also, there is a security issue. Operations is a 24/7
game, with constant shift changes, not to mention changes
in personnel as part of the normal business hiring cycle.
Long before the policy of limited access was regularly en-
forced at NASA, the designers of the SAFS realized that
having, for example, a single “operations” account that sev-
eral different people used was a security nightmare, and
having a separate account for every operator was a night-
mare of a different nature, considering the sheer number
of personnel involved. Therefore, from the very start, the
SAFS was designed to be directly accessed by only one
person – the system administrator, who would only do so
in order to perform system maintenance.

This did not mean that station personnel did not want
access. In some cases, they demanded it. Once again, how-
ever, a polite but firm attitude and good design saved the
day, without the need to resort to tooth and claw. Going
back to the requirements, the designers of the SAFS made
sure that it was understood that operator access endangered
the autonomy and security requirements of the SAFS.



That done, the design anticipated the needs of opera-
tions, and provided for them. Did operations personnel need
the SAFS logs? They could access them via FTP. Did sta-
tion personnel need to know if the data got through? That
was the purpose of the SAFS web reports mentioned earlier,
and, if those did not work, one could get the same informa-
tion by examining the logs via FTP. Did administrative work
need to be done in a remote location, such as Alaska? The
SSH program provided a secure (encrypted) method of re-
mote administration that could be used by a single system
administrator at the Wallops Flight Facility.

And while we are on the subject, let us touch on the
matter of security. As all of you know, computer security
has been of increasing concern over the years, and has only
become even more of a priority since the 9/11 tragedy. The
design of the SAFS anticipated this.

First, there are the security advantages already mentioned
– limiting the number of users accessing the system to the
system administrator only, and using SSH to encrypt all re-
mote administration traffic. On top of this, FASTCopy has
several security features. First, it has the capability to create
a password for its use alone. This password, which is only
sent in an encrypted format, is only good for sending and
receiving files. Even if the encryption was somehow bro-
ken, one cannot access the SAFS system proper using the
FASTCopy password. Second, it has a built-in access con-
trol facility; by default, no one can push or pull files using
FASTCopy. Every customer is added explicitly to the secu-
rity access list – not only does the customer have to have
the right password, but must be connected from the cor-
rect place. All of these parameters are configurable – one
can set up FASTCopy to only allow a pull from a particular
machine with the correct password, and given only certain
rights on the system.

Also, the fact that the SAFS was designed atop a UNIX
system using as much standard and open-source code as
possible is important. UNIX has been around for over thirty
years. Methods and tools for securing a UNIX system are
well-known and mature. Second, there is an active, thriv-
ing, and large community working on UNIX security is-
sues, and an administrator is not dependant on one entity
– such as Microsoft – to produce fixes. Finally, because
the SAFS relies on such tried-and-tested methods as shell
scripting to do its work, security does not “get in the way”
of the operations to the SAFS – security patches can be ap-
plied, services can be turned off, and the operating system
can be upgraded, without affecting the normal operation of
the system. I know this because as security requirements
have tightened, the SAFS has continued to weather these
changes and more with no problems at all.

As a counterexample, I maintain a few machines which
are, in terms of server hardware, exactly the same as the
SAFS. When I applied a routine security patch to one of

these non-SAFS systems, a patch which required upgrad-
ing the operating system and had been tested on the SAFS,
the non-SAFS system broke – the software on it stopped
working, though it booted up fine. I found out later that the
system in question used proprietary hardware and propri-
etary, Java-based code that was not compatible with the lat-
est version of the operating system. The many, many man-
hours I spent dealing with this issue contrast starkly with the
ease with which I upgraded and patched the nearly-identical
SAFS. Sometimes the only way to know good design is to
notice the problems that the design isnot causing.

Leaving security behind for now, one major obstacle the
SAFS had to overcome involved a challenge which came to
be called the “swap space problem”. Without going into too
much detail, an unfortunate interaction between the FAST-
Copy setup on the SAFS and on a customer machine re-
sulted in a situation where if a file with the same file name
is sent more than once, problems with the swap space on
the SAFS can result which can, in time, crash the SAFS,
and will certainly, before then, block data flow.

However, it took months of man-hours and extensive
work to find this out, as the cause of the problem was not
obvious – the problem was insidious, and it often took days
after the triggering event to develop any symptoms. Here
is where the initial design of the SAFS played an impor-
tant role. Aside from the technical issues that prompted
the use of the FASTCopy product, as alluded to before, the
other reason the SAFS team chose FASTCopy is because
that COTS product is produced by a small, competent team
of technologists who were eager to do business with NASA.
Because the size and nature of the company, the SAFS team
was able to develop a personal relationship with the vendor
which became critical in solving the so-called “swap space
problem”.

Again, the importance of this human factor cannot be
underestimated. The dogged, tireless support we got from
the FASTCopy people is nearly (but not quite) impossible
to get from an entity as large as, say, Microsoft. This fact
was factored into the design – in fact, every element of the
design was informed by the concept of making it not just
easy to put together, but easy to maintain. And the heart
and soul of sustaining engineering are the people who do it,
and the relationship with the vendors involved.

However, this said, one must remember that good cus-
tomer relations and good design can only go so far. An-
other, unfortunate lesson one needs to learn is when to know
something is impractical.

Earlier I mentioned certain legacy missions that were
considering acquiring data from the SAFS. These missions
were used to getting their data from a buggy, difficult-to-
use system which pushes data via FTP. The main impetus
to move these legacy missions to the SAFS came from the
ground station operations group, upon whom the burden of



getting this system to work, often with the software equiva-
lent of spit and baling wire, fell.

Many man-hours were spent on this concept, of mov-
ing from the less-reliable system to the more-reliable SAFS.
However, there was one major stumbling block. The mis-
sions did not want to buy FASTCopy, and did not want to
pull their data via FTP – they wanted it pushed by FTP, the
one thing the SAFS will not do, for reasons already dis-
cussed. (That is, the additional development would have
been more expensive than FASTCopy, and would have risked
breaking the SAFS.) Eventually, although discussions are
still underway, it was generally decided that moving those
legacy missions to the SAFS was not feasible without more
money. In the end, one has to be aware of one’s limitations,
and work with them.

How is this cautionary tale related to design? First of
all, the flexibility of the design allowed us to offer a wide
variety of solutions to the potential customers, to the point
where the only obstacle that mattered was the desire for an
FTP push. Secondly, because the requirements had teeth,
because we were unwilling, as it were, to modify the SAFS
to make coffee, we saved ourself from committing to an ef-
fort that would have likely been costly and ultimately futile,
given the incompatible requirements levied by the projects
in question. Without the clarity of the design requirements,
it would have taken a lot longer – and more money – to
reach this conclusion.

In contrast, remote users willing to purchase FASTCopy
are able to seamlessly integrate with SAFS. For example,
commercial ground stations in Alaska and Norway were
brought in to provide supplemental services to the Ground
Network. They integrated FASTCopy into their existing ar-
chitecture without the need to duplicate the SAFS hardware
platform. Since a SAFS does not care whether it gets data
from a SAFS or some other architecture, these ground sta-
tions were able to send data to the central SAFS, which was
then distributed as normal to already-existing customers.
Once again, the flexibility of the design was key.

These are only some of the many examples of how, in
the field, that good, pre-planned design saved money in the
operation of the SAFS. There are many other cost-saving
elements of the design that deserve mentioning.

The SAFS team built many methods into their design
to reduce basic maintenance costs. First, as mentioned be-
fore, by purchasing spares for all important components the
SAFS team prevented a single point of failure, meaning that
when there is a problem, there is no costly damage to op-
erations – for example, if the central SAFS goes down, the
station SAFS machines automatically send to the backup
central SAFS instead, with no costly interruption of data
flow service. By allowing for remote operation, the num-
ber of people needed to maintain all the SAFS systems is
reduced, and this staff then reaps the benefits of specializa-

tion, in terms of being able to understand and troubleshoot
the system. By logging the routine operations of the sys-
tem, keeping an eye to what is required of the SAFS, the
design allows the system administrator the ability to trou-
bleshoot quickly and efficiently, and puts useful operational
data right at his fingertips. The time (and, therefore, money)
saved by this would be difficult to measure, as the amount
would be so large. Similarly, the web-based automated re-
porting tools designed into the SAFS allow the administra-
tor to access much of this information without even logging
in. Plus, since the SAFS is a UNIX system, it can use the
“cron” feature to automatically schedule tasks, freeing the
administrator from routine maintenance, and saving further
money.

Let us not forget, however, the all-important human fac-
tor. My work in the field during the transition allowed me
to understand the operational environment, to meet and em-
pathize with the operations personnel and vendors, and to
understand and become sensitive to the needs of the people
doing the real operations work. Anyone who has ever been
involved in the sort of problems caused by a misunderstand-
ing between vendors, operators, engineering, and customers
can understand the amount of money saved, in terms of time
alone, by, from the start, making an effort to prevent such
misunderstandings.

The other side of this human favor lies in avoiding fea-
ture creep – the aforementioned unnecessary addition of
new features to already-stable software – by having clear
and technically possible requirements, with hard and fast
criteria for meeting those requirements which are not de-
pendant on pleasing a particular person or class of people.
The best tools for preventing this creep, aside from sim-
ple human empathy and politeness, the value of which can-
not be underestimated, include documenting one’s methods
and the reasons behind them. The documentation and train-
ing made it clear not only how the SAFS worked, butwhy
it worked the way it did. Never underestimate the advan-
tage of good, solid reasons behind your design decisions,
and making those reasons widely known. People are much
more understanding when they have access to your reason-
ing. Considering future needs, and providing the ability to
meet them, prevents having to add a needed feature later
– which links back into not just understanding the require-
ments of the system, but projecting those requirements into
the future. And, at the risk of repeating myself, there is
nothing better than a solid, close relationship with everyone
– customers, vendors, operators – involved with a system.
Anyone who thinks system administration is a purely tech-
nical venture is fooling themselves.

As I mentioned before, a willingness to spend additional
money at the design stage saves an immense amount of
money later. By picking a RAID system and server archi-
tecture that not only meets, but exceeds requirements, the



SAFS team made sure there was plenty of margin for er-
ror, and plenty of room for expansion. Similarly, a willing-
ness to invest time, as well as money, in a good COTS ven-
dor pays excellent dividends later, no matter how cheap the
competition might be. In addition to this, I have not even
begun to touch on the money saved in terms of the time
required to come to an understanding of the SAFS system
by the initial outlay of time and effort the SAFS team put
into documentation. On average, I estimate problems have
been solved literally an order of magnitude faster with the
provided documentation than the time it takes me to solve
similar problems on more poorly documented systems that
I administer. Finally, and most importantly, by working di-
rectly with the development team, even on the tail end of
the design, I was able to make sure not only that the design
fit the needs of sustaining engineering, but that as a system
administrator I was ready for the challenges that were to
come.

After the transition, two major techniques were employed
in saving costs. First, as previously discussed, one must
stick to the requirements, so one is not bitten by unexpected
new work. Second, my training taught me to brainstorm
new solutions, to make use of the advantages of the design
to come up with solutions that meet customer needs, even if
those needs are not met in the way the customer originally
suggested. Always replace an obstacle with an alternative
solution.

In the end, not to be too toothy about it, it comes down
to the old aphorism: “You need to spend money to make
money.” And if time is money, well, this goes for time and
effort as well. If anything, my experiences in the field has
shown this to be true over and over again. We’ve known this
all along, but we’re reluctant to admit it, as it means more
work, and the easy way is so very tempting. Therefore it
bears repeating until my teeth fall out: By spending extra
time and care on the design, with an eye not only towards
solving immediate problems but toward making the system
easy to maintain as part of the ever-so-important human fac-
tor, the cost savings for everyone is so great that we cannot
afford tonotdesign things this way, lest we end up bitten on
the posterior by the technical issues compounded with the
eternal conundrum of human nature.


